Dietary saturated fat and docosahexaenoic acid differentially effect cardiac mitochondrial phospholipid fatty acyl composition and Ca2+ uptake, without altering permeability transition or left ventricular function
نویسندگان
چکیده
High saturated fat diets improve cardiac function and survival in rodent models of heart failure, which may be mediated by changes in mitochondrial function. Dietary supplementation with the n3-polyunsaturated fatty acid docosahexaenoic acid (DHA, 22:6n3) is also beneficial in heart failure and can affect mitochondrial function. Saturated fatty acids and DHA likely have opposing effects on mitochondrial phospholipid fatty acyl side chain composition and mitochondrial membrane function, though a direct comparison has not been previously reported. We fed healthy adult rats a standard low-fat diet (11% of energy intake from fat), a low-fat diet supplemented with DHA (2.3% of energy intake) or a high-fat diet comprised of long chain saturated fatty acids (45% fat) for 6 weeks. There were no differences among the three diets in cardiac mass or function, mitochondrial respiration, or Ca(2+)-induced mitochondrial permeability transition. On the other hand, there were dramatic differences in mitochondrial phospholipid fatty acyl side chains. Dietary supplementation with DHA increased DHA from 7% to ∼25% of total phospholipid fatty acids in mitochondrial membranes, and caused a proportional depletion of arachidonic acid (20:4n6). The saturated fat diet increased saturated fat and DHA in mitochondria and decreased linoleate (18:2n6), which corresponded to a decrease in Ca(2+) uptake by isolated mitochondria compared to the other diet groups. In conclusion, despite dramatic changes in mitochondrial phospholipid fatty acyl side chain composition by both the DHA and high saturated fat diets, there were no effects on mitochondrial respiration, permeability transition, or cardiac function.
منابع مشابه
Dietary saturated fat and docosahexaenoic acid differentially effect cardiac mitochondrial phospholipid fatty acyl composition and Ca uptake, without altering permeability transition or left ventricular function
High saturated fat diets improve cardiac function and survival in rodent models of heart failure, which may be mediated by changes in mitochondrial function. Dietary supplementation with the n3-polyunsaturated fatty acid docosahexaenoic acid (DHA, 22:6n3) is also beneficial in heart failure and can affect mitochondrial function. Saturated fatty acids and DHA likely have opposing effects on mito...
متن کاملDietary supplementation with docosahexaenoic acid, but not eicosapentaenoic acid, dramatically alters cardiac mitochondrial phospholipid fatty acid composition and prevents permeability transition.
Treatment with the omega-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) exerts cardioprotective effects, and suppresses Ca2+-induced opening of the mitochondrial permeability transition pore (MPTP). These effects are associated with increased DHA and EPA, and lower arachidonic acid (ARA) in cardiac phospholipids. While clinical studies suggest t...
متن کاملDietary fat and heart failure: moving from lipotoxicity to lipoprotection.
There is growing evidence suggesting that dietary fat intake affects the development and progression of heart failure. Studies in rodents show that in the absence of obesity, replacing refined carbohydrate with fat can attenuate or prevent ventricular expansion and contractile dysfunction in response to hypertension, infarction, or genetic cardiomyopathy. Relatively low intake of n-3 polyunsatu...
متن کاملDietary Fatty Acids Alter Lipid Profiles and Induce Myocardial Dysfunction without Causing Metabolic Disorders in Mice
Oversupply of bulk saturated fatty acids (SFA) induces metabolic disorders and myocardial dysfunction. We investigated whether, without causing metabolic disorders, the uptake of individual dietary SFA species alters lipid profiles and induces myocardial dysfunction. C57BL/6 mice were fed various customized long-chain SFA diets (40% caloric intake from SFA), including a beef tallow (HBD), cocoa...
متن کاملImproved Mitochondrial Function with Diet-Induced Increase in Either Docosahexaenoic Acid or Arachidonic Acid in Membrane Phospholipids
Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP). We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA; 22:6n3) and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6) in mitochondrial membranes is associated with a greater Ca(2+) load required to i...
متن کامل